

DESENVOLVIMENTO DE UM REATOR PILOTO EM AÇO INOX DESTINADO À MULTIPROCESSOS

LUCAS DE OLIVEIRA ESTEVAM^{1,2*}, LÚCIO ROGÉRIO JÚNIOR¹, ANTÔNIO MANOEL BATISTA DA SILVA^{1,2}

¹Universidade de Uberaba - Departamento de Engenharia Elétrica e Computação ²Universidade de Uberaba - Programa de Mestrado em Engenharia Química *e-mail: lucas.estevam@edu.uniube.br

<u>RESUMO</u> - Este artigo tem como objetivo apresentar as etapas de desenvolvimento de um reator químico para produtos piloto, demonstrando um estudo bibliográfico sobre o tipo de equipamento desenvolvido. Especificações do processo inicial de produção foram apresentadas, demonstrando os resultados obtidos até esta etapa do projeto.

INTRODUÇÃO

Reatores químicos são equipamentos onde realizadas reações químicas diferentes elementos buscando um produto de interesse. De acordo com Santos Vasconcelos (2002), é denominado reator químico os equipamentos cujo objetivo é a realização de uma reação química, sob condições controladas e obtendo um ou mais produtos finais. Os reatores recebem as matérias primas, assim como a água, e realizam a mistura e homogeneização para obtenção do produto especificado. Segundo Levenspiel (2000), existem dois tipos de reatores: os reatores descontínuos (batelada) e os reatores contínuos.

Reatores contínuos possuem fluxo de entrada e saída, ou seja, sempre há um fluxo de saída contínuo durante a operação deste reator. De acordo com Hayes (2001), estes reatores são operados em estado estacionário, ou seja, onde a vazão mássica para dentro do reator é igual a vazão mássica para fora do reator, e a temperatura e concentração não mudam com o tempo. Este tipo de reator é usado principalmente no estudo de cinética de reações heterógenas (LEVENSPIEL, 2000).

Reatores em batelada, conhecidos como reatores tipo tanque, são aqueles que armazenam os reagentes e promove a reação entre eles, para obter a homogeneização do

produto, estes reatores podem utilizar de diferentes tipos de agitadores e submeter os reagentes à pressão ou a vácuo (ROBERTS, 2010). De acordo com Levenspiel (2000), este tipo de reator opera de forma isotérmica e por ser relativamente simples, pode ser adaptável para escalas de laboratório.

Este trabalho tem como objetivo apresentar as etapas de desenvolvimento e construção de um reator piloto utilizado para multiprocessos. O equipamento pode ser classificado como um reator químico do tipo tanque, operando através de processos de bateladas.

MATERIAL E MÉTODOS

O reator tem é otimizado para atender a indústria de produtos cosméticos ou produtos que podem ser fabricados em pequenas quantidades, pois a sua capacidade é de apenas 5 litros, buscando atender o desenvolvimento de produtos piloto. Contudo, o equipamento pode ser aplicado para realização de reações químicas e físico-químicas, atendo outros processos como os segmentos farmacêuticos, de alimentos, químicos, etc.

Esse tipo de reator é relativamente simples, por conta disto, pode ser facilmente reduzido para escalas de laboratório.

Na construção deste equipamento foi utilizado chapas de inox AISI-316L em todas as partes que entram em contato com os reagentes, e para as demais partes foi utilizado aço inox AISI-304. Desta forma, garantimos uma construção sanitária e evitamos reações indesejadas durante o processo de reação do produto. O equipamento recebe também um acabamento mecânico através de um polimento nas partes internas e externas, garantindo maior longevidade e auxiliando nos procedimentos de limpeza e higienização da máquina.

A primeira etapa de desenvolvimento foi realizar o projeto do equipamento através de um software de desenho assistido, definindo suas dimensões e parâmetros para a montagem e construção. Foi desenvolvido um reator de 5 litros, com 222 mm de altura e 200 mm de diâmetro, totalizando um peso de 20 kg com o tanque vazio . Também foi projetado uma base para comportar este reator, medindo 1000 mm de largura e 1300 mm de altura até seu topo. Através da Figura 1 podemos conferir o projeto 2D deste equipamento, as medidas se encontram em milímetros.

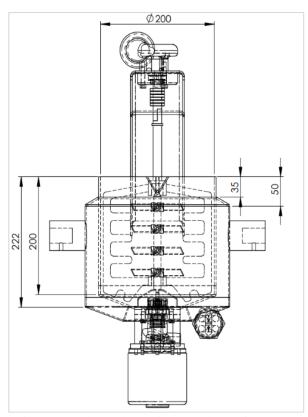


Figura 1: Esboço do projeto 2D do equipamento Fonte: Elaborado pelos autores

A segunda etapa do projeto foi a construção física do equipamento. O primeiro passo foi tornar as chapas que estão

inicialmente planas em formato cilíndrico, moldando-as de acordo com o desejado. Para isso foi utilizado um equipamento conhecido como calandra, sendo criados dois cilindros, um interno e outro externo. Para unir as duas as duas extremidades de uma única chapa foi utilizado a solda do tipo MIG (Metal Inert Gas). A espessura da chapa interna é de 1 mm e a chapa externa é de 3 mm.

Com o cilindro interno montado, é aplicado uma jaqueta com o material lã de rocha, para promover o isolamento térmico entre o meio externo e interno do reator. Após essa montagem, o cilindro interno com a jaqueta e o cilindro externo são unidos e soldados, finalizando a montagem do reator. Na figura 2, podemos visualizar o vaso do reator finalizado.

Figura 2: Vaso do reator Fonte: Acervo dos autores

Através da Figura 2, podemos observar que na parte superior do equipamento foi construído um dosador, sendo responsável por transferir o produto resultante das reações para outro recipiente. Esta transferência de material é possível através de uma base na qual o vaso do reator é montado, possibilitando uma inclinação de até 140° do vaso do reator para a transferência do produto. A base do equipamento pode ser conferida através da Figura 3. Deve-se ressaltar que nesta imagem

foi considerado apenas a estrutura interna da base, em sua montagem haverá chapas de inox AISI-304 para o acabamento do equipamento final.



Figura 3: Montagem 3D do reator e suporte Fonte: Elaborado pelos autores

Para controlar a temperatura reagentes, foi idealizado e construído duas entradas para resistências elétricas, de forma que estas resistências não entrem em contato produto, garantindo a melhor equipamento e evitando sanitização do possíveis reações indesejadas. A leitura da temperatura do produto é realizada através de um sensor PT100 com haste em inox. Este sensor está instalado na parte interna do reator e em contato direto com o produto, desta forma obtemos com precisão a temperatura dos reagentes. Podemos conferir as entradas para resistências finalizadas no equipamento através da Figura 4.

Para promover a agitação dos reagentes e garantir a melhor homogeneização do produto, foi construído um agitador central do tipo raspador, sendo fabricado em chapa de inox AISI-304. A homogeneização do produto é uma etapa importante em sua fabricação, a qual busca evitar eventuais aglutinações dos reagentes e otimiza o tempo de produção (LEVENSPIEL, 2000).

Figura 4: Reator com entradas finalizadas Fonte: Acervo dos autores

O agitador de um reator ou tanque, promove a homogeneização de diferentes reagentes, podendo ser eles líquido-líquido, sólido-líquido, sólido-sólido HAYES, 2001). Este acessório é conectado à um motor com redutor, gerando maior torque que será transmitido através do eixo deste agitador. A instalação foi realizada na tampa superior do equipamento, sendo utilizada uma vedação mecânica entre a tampa e o eixo do acessório. Na Figura 5, conferimos este agitador finalizado.

Figura 5: Agitador do raspador Fonte: Acervo dos autores

Outro acessório foi construído para promover a agitação dos reagentes. Um agitador do tipo turbina, movido por um motor de 24 volts e 250 watts de potência foi selecionado para auxiliar na homogeneização dos reagentes e conectado em seu eixo foi construído uma pequena hélice. Esta montagem garante que em misturas contendo reagentes sólidos não causem o aglutinamento indesejado.

O agitador foi posicionado na parte inferior do equipamento, e para sua vedação foi utilizado um selo mecânico, em que podemos observar a construção de um flange na parte superior do motor (Figura 6), conectando-o ao equipamento. O motor previamente montado com a hélice e flange pode ser visualizado na Figura 6.

Figura 6: Agitador central com motor elétrico Fonte: Acervo dos autores

RESULTADOS E DISCUSSÃO

Foi possível através deste trabalho desenvolver o projeto de um reator químico do tipo tanque, operando através de bateladas. O equipamento foi fabricado em uma escala reduzida, objetivando atender projetos de produtos pilotos, em que o operador poderá desenvolver novos produtos, sem a necessidade de dispor de grandes quantidades de reagentes para obter e analisar os resultados.

De acordo com os materiais descritos, podemos observar vários elementos a serem controlados no equipamento, sendo alguns deles: o conjunto motoredutor e agitador raspador, as resistências elétricas instaladas na parte inferior do equipamento para o aquecimento da mistura, o agitador central instalado na parte inferior do equipamento, entre outros acessórios que ainda poderão ser implementados no projeto.

CONCLUSÃO

Com objetivo de melhorar as questões de operação, qualidade e segurança, a próxima etapa deste trabalho será implementar um sistema de controle e automação utilizando um CLP (Controlador Lógico Programável). O controlador será responsável por receber os sinais dos sensores e atuadores instalados no equipamento e enviar sinais para o controle dos motores, elementos de sinalização visual e sonora, resistências de aquecimento etc.

Nesta etapa melhoria e automação do reator, o sistema receberá uma IHM (Interface Homem Máquina) composta por visor em LCD touchscreen, possibilitando a operação do equipamento em modo manual ou automático, tornando este processo intuitivo e de fácil controle para o operador. Neste visor será mostrado informações importantes sobre o funcionamento do equipamento, como velocidade dos agitadores, peso do produto, tempo de operação etc.

AGRADECIMENTOS

Os autores agradecem a empresa Masternox Indústria e Comércio LTDA, pelos recursos e infraestrutura disponíveis para realização desta etapa do trabalho.

REFERÊNCIAS

- HAYES, R.E. (2001), **Introduction to Chemical Reactor Analysis**. 1 Ed. Boca
 Raton: Taylor & Francis Group. 436p.
- LEVENSPIEL, O. (2000), **Engenharia das** reações químicas. 3. Ed. São Paulo: Editora Edgard Blücher Ltda. 565p.
- ROBERTS, G. W. (2010), **Reações químicas e reatores químicos**. 1. Ed. São Paulo: Editora LTC. 432p.
- SANTOS, V. A.; VASCONCELOS E.C. (2002), **Extrapolação de dados cinéticos obtidos em reatores químicos homogêneos.** 1 Ed. Pernambuco: Revista Química & Tecnologia. 19p.