

PRINCIPAIS ADULTERAÇÕES E NÃO CONFORMIDADES CONSTATADAS NO COMBUSTÍVEL ETANOL

B. F. MENEZES¹, M. L. BEGNINI², T. S. NUNES³ J. R. D. FINZER^{41,2,3,4} Universidade de Uberaba, Departamento de Engenharia Química

RESUMO – O uso do etanol no Brasil e no mundo neste ano de 2020, tem se tornado indispensável, não só como combustível, mas na fração de 70 % de seu teor alcoólico devido a pandemia causada pelo Corona Vírus. Este trabalho fala da importância do etanol estar dentro das normas de especificação da ANP, apresentando na metodologia amostras dentro dos parâmetros e amostras fora da normalidade identificadas por análises físico-químicas, pois o combustível etanol quando adulterado, pode danificar os automóveis, trazendo sérios prejuízos aos proprietários dos veículos e prejudicando o meio ambiente. A conclusão deste trabalho foi mostrar que qualquer adulteração nos combustíveis influenciam os resultados que se tornam fora das normas estabelecidas pela ANP.

1. INTRODUÇÃO

O etanol combustível é considerado como ecologicamente correto, pois o cultivo de sua matéria-prima reduz a quantidade de gás carbônico na atmosfera através da fotossíntese (Petrobras, 2020).

Hoje em dia, no Brasil, consome-se uma quantidade de etanol que representa metade da gasolina que seria utilizada. Esse sucesso é derivado de dois fatores fundamentais: a ampla cobertura geográfica e a comercialização do etanol hidratado e da gasolina C (gasolina comum com adição de álcool etílico anidro) por todos os postos de combustíveis do país. A expansão e popularização do etanol no Brasil começaram em 1975 com a criação do Proálcool – Programa Nacional do Álcool, que visava à diminuição da dependência do petróleo pelo país. Porém, com o aumento da produção interna de petróleo e o decréscimo de seus preços internacionais, a gasolina ganhou competitividade perante o etanol hidratado (BNDES; CGEE, 2008).

No Brasil, o percentual (v/v) de etanol na gasolina é de 27% (MAPA, 2015), sendo que sua presença pode acarretar na formação da pluma dissolvida do contaminante no meio subterrâneo, e presença do efeito denominado cossolvência (Corseuil, Kaipper, Fernandes, 2004). Este efeito é responsável pela maior solubilidade dos compostos monoaromáticos na fase aquosa, transportando de forma mais fácil e rápida os presentes nos combustíveis derivados do petróleo (gasolina, diesel).

A importância deste trabalho foi realizar análises físico-químicas do combustível Etanol, com amostra considerada normal e amostra adulterada para verificar a concordância com as normas

estabelecidas.

2. REFERÊNCIA BIBLIOGRÁFICA

Conceitua-se a adulteração como uma adição ilícita de qualquer substância anormal à composição padrão dos combustíveis, na qual diferem do que é normatizado pela ANP, em qualquer produto que conduz à não conformidade com a especificação padrão (Gedik, 2015).

Etanol Combustível: a maioria das não conformidades verificadas no etanol hidratado combustível está relacionada ao teor alcoólico (detectado com a verificação da massa específica e da temperatura) e à condutividade elétrica, que podem ser ocasionadas pela contaminação ou adição de água ou de outro produto aquoso. Também pode ocorrer adição indevida de metanol, que é um álcool extremamente tóxico à saúde humana, podendo causar cegueira, irritação das mucosas e até mesmo a morte (ANP, 2017).

3. MÉTODOS ANALÍTICOS NO ETANOL HIDRATADO COMBUSTÍVEL (EHC)

Foram realizadas algumas análises do etanol combustível para saber se estão dentro das normas estabelecidas pela ANP.

3.1. DETERMINAÇÃO DA MASSA ESPECÍFICA A 20°C

Em uma proveta de 1 litro foi adicionada 1 litro de gasolina, em seguida um densímetro limpo e seco (800,00 a 850,00 Kg/m³) é submerso no produto, de modo que flutue livremente sem tocar o fundo ou as paredes da proveta; um termômetro é introduzido, tendo o cuidado de manter a coluna de mercúrio totalmente imersa conforme mostrado na Figura (1). Aguarda-se 5 minutos para que aconteça a equalização de temperatura e realiza-se as leituras nas escals do densímetro e do termômetro.

Noom is 1979

Figura 1: Determinação da Densidade do Etanol Hidratado Combustivel.

Fonte: Autor, 2020.

Na Figura 2, nota-se visualmente na adulteração a adição de água no etanol..

Figura 2: Etanol Adulterado.

Fonte: Autor, 2020.

A Tabela 1 de conversão das densidades do Etanol Hidratado Combustivel, o qual converte a densidade para 20°C .

Tabela 1: Concentrações do Etanol Hidratado Combustível em função datemperatura.

ERSÃO - ETANOL

Terriporatura	Massa especifica lida kg/m³	Massa especifica a 20 °C kg/m³	Resultado a 20 °C		
			Grau alcoólico % m/m	Grau alcoólico a 20 ºC % v/v	
20.0	815.20	815.20	91.00	93.99	
20.0	814.93	814.93	91.10	94.07	
20.0	814.66	814.66	91.20	94.14	
20.0	814.39	814.39	91.30	94.21	
20.0	814.12	814.12	91.40	94.28	
20.0	813.85	813.85	91.50	94.35	
20.0	813.58	813.58	91.60	94.42	
20.0	813.31	813.31	91.70	94.50	
20.0	813.04	813.04	91.80	94.57	
20.0	812.76	812.76	91.90	94.64	
20.0	812.49	812.49	92.00	94.71	
20.0	812.22	812.22	92.10	94.78	
20.0	811.94	811.94	92.20	94.85	
20.0	811.67	811.67	92.30	94.92	
20.0	811.40	811.40	92.40	94.99	
20.0	811.12	811.12	92.50	95.06	
20.0	810.85	810.85	92.60	95.14	
20.0	810.57	810.57	92.70	95.21	
20.0	810,30	810.30	92,80	95.28	
20.0	810.02	810.02	92.90	95.35	
20.0	809.75	809.75	93.00	95.42	
20.0	809.47	809.47	93.10	95.49	
20.0	809.19	809.19	93.20	95.56	
20.0	808.91	808.91	93.30	95.63	
20.0	808.64	808.64	93.40	95.70	
20.0	808.36	808.36	93.50	95.77	
20.0	808.08	808.08	93.60	95.83	

Fonte: SindiPetróleo, 2015.

3.2. TESTE DO pH

O pH da amostra de etanol, seste trabalho foi medido com um peagâmetro, (Figura 3), da marca Digimed e modelo (DM22). O eletrodo foi mergulhado na amostra e agitou-se ligeiramente. Em seguida aguardou-se a estabilização para a leitura. De acordo com NBR-10891 os valores normalizados são de 6,0 a 8.

Figura 3: peagâmetro.

Fonte: Autor, 2020.

3.3. TESTE DA CONDUTIVIDADE

Para determinar a condutividade da amostra de etanol foi utilizado um condutivimetro (Figura 4), da marca Digimed e modelo (DM22). O eletrodo foi introduzido na amostra e agitou-se ligeiramente. Em seguida aguardou-se a estabilização para a leitura. De acordo com a NBR-10547 o valor máximo normalizado é de 389,0 µS/m.

Figura 4: Condutivímetro.

Fonte: Autor, 2020.

3.4. TESTE DE ASPECTO E COR

Em uma proveta de 1L foi realizada um acondicionamento da amostra oara a descontaminação e eliminação de possíveis interferentes na análise. A proveta foi preenchida com a amostra alcoolica e foi erificado o aspecto quanto à coloração e à presença de impurezas expressando os resultados:

COR: Incolor;

ASPECTO: (LII) Límpido e isento de impurezas; (LI) Límpido e com impureza; (TII) Turvo e isento de impurezas; (TI) Turvo e com impurezas.

4. RESULTADOS E DISCUSSÃO

Baseado nos resultados obtidos das análises e testes realizados na amostra de Etanol Hidratado Combustível, feitos de acordo com as normas e padrões da ANP e demais orgãos de regulamentação, certificou-se que a amostra esta dentro dos padrões de especificação aprovadas para a venda e uso, se atender asespecificações descritas na Tabela 2. Na tabela é fornecido o resultado de análises de uma amostra e como resultado o combustível atende as especificações.

Tabela 2: Dados de especificação e resultados analíticos do Etanol Hidratado Combustível.

Característica	Método	Especificação	Resultado	Unidade
Massa Específica	NBR-5992 NBR15639	802,9 a 811,2 (3)	809,2	kg/m³.
pH	NBR-10891	6,0 a 8,0	6,76	-
Condutividade	NBR-10547	máximo 389,0	95,97	μS/m
Aspecto	Visual	NOTA (1)	PASS	-
Cor	Visual	NOTA (2)	INCOLOR	-

Fonte: AUTOR, 2020.

NOTAS: (1) LII – Límpido e Isento de Impurezas; (2) PASS – Incolor ou levemente amarelado se isento de corantes; (3) Os limites mínimo para a massa específica e máximo para o teor alcoólico do etanol hidratado combustível serão, respectivamente, de 805,0 kg/m³ e 96,6 % em volume (94,7 % massa) na importação, distribuição e revenda do produto, ficando inalterados os respectivos limites superior e inferior.

Para outra amostra, baseado nos resultados obtidos das análises e testes realizados na amostra de Etanol Hidratado Combustível, feitos de acordo com as normas e padrões da ANP e demais orgãos de regulamentação, certificou-se que a amostra está fora dos padrões de especificação reprovada para a venda e uso, conforme a análise dos resultados na Tabela 3. Os parâmetros fora de especificação são: massa específica que influenciam diretamente no INPM (Instituto Nacional de Pesos e Medidas) e no °GL (grau alcoólico).

Tabela 3: Dados de especificação e resultados analíticos do Etanol Hidratado Combustível Adulterado.

Característica	Método	Especificação	Resultado	Unidade
Massa Específica	NBR-5992 NBR15639	802,9 a 811,2 (3)	829,1	kg/m³.
pН	NBR-10891	6,0 a 8,0	6,80	-
Condutividade	NBR-10547	máximo 389,0	28,99	μS/m
Aspecto	Visual	NOTA (1)	PASS	-
Cor	Visual	NOTA (2)	INCOLOR	-

Fonte: AUTOR, 2020.

NOTAS: (1) LII – Límpido e Isento de Impurezas; (2) PASS – Incolor ou levemente amarelado se isento de corantes; (3) Os limites mínimo para a massa específica e máximo para o teor alcoólico do etanol hidratado combustível serão, respectivamente, de 805,0 kg/m³ e 96,6 % em volume (94,7 % massa) na importação, distribuição e revenda do produto, ficando inalterados os respectivos limites superior e inferior.

5. CONCLUSÃO

Adulteração em combustíveis vem sendo preocupante para a população, os orgãos responsáveis pela fiscalização estão tendo trabalho com estes fatores de adulteração que vem acontecendo nas grandes cidades, aplicando multas e até fechando Postos de Combustíveis. O combustível etanol quando adulterado, pode danificar os automóveis, trazendo sérios prejuízos aos proprietários dos veículos e prejudicando o meio ambiente. A finalidade deste trabalho foi mostrar resultados de análises físico-químicas do etanol dentro dos parâmetros de conformidades, e resultados de etanol adulterado. A conclusão deste trabalho mostra que o resultado das amostras apresentadas dentro das Conformidades Específicas está na Tabela (2), e as amostras que apresentaram resultados fora das especificações está na Tabela (3), onde os parâmetros fora de especificação são: massa específica que influenciam diretamente no INPM (Instituto Nacional de Pesos e Medidas) e no °GL (grau alcoólico). Uma solução dada seria colocar mangueiras de abastecimento transparente nos Postos de Combustíveis para uma melhor visualização dos consumidores.

6. REFERÊNCIAS

ANP - **Agência Nacional do Petróleo, Gás Natural e Biocombustíveis,** 2017. Disponível em: http://www.anp.gov.br. Acesso em: 12 nov 2020.

BNDES E CGEE. (Org.). Bioetanol de cana-de-açúcar: energia para o desenvolvimento sustentável. Rio de Janeiro: Bndes, p. 316, 2008.

CORSEUIL, H. X.; KAIPPER, B. I. A.; FERNANDES, M. Cosolvency effect in subsurface systems contaminated with petroleum hydrocarbons and etanol. Water Research. v.38, n.6, p.1449-1456, 2004.

GEDIK, K.; UZUN, Y.; Characterization of the properties of diesel-base oil-solvent waste oil blends used as generic fuel in diesel engines, Fuel Process. Technol 139, 2015.

PETROBRAS. **ETANOL.** Disponível em: http://www.br.com.br/wps/portal/portalconteudo/produtos/automotivos/etanol. Acesso em: 20 out. 2020.

SINDIPETRÓLEO, Testes de qualidade; **TABELAS DE CONVERSÕES DE PRODUTOS**, 2015; Disponível em: http://www.sindipetroleo.com.br. Acesso em: 10 out. 2020.